The Shear Strength of Rock and

Rock Joints

N. BARTON*

Rock joints exhibit a wide spectrum of shear strength under the low effective
normal stress levels operating in most rock engineering problems. This is
due to the strong influence of surface roughness and variable rock strength.
Conversely, under the high effective normal stress levels of interest to tectono-
physicists the shear strength spectrum of joints and artificial faults is narrow,
despite the wide variation in the triaxial compression strength of rocks at
fracture. In Part I of this review, empirical non-linear laws of friction and
fracture are derived which explain this paradoxical behaviour and which
can be used to predict or extrapolate shear strength data over the whole
brittle range of behaviour.

Under higher confining pressures the behaviour of rock ceases to be brittle
as the brittle—ductile transition is reached. Expressions are derived which
quantify this condition and explain the variable transition behaviour of rocks
as dissimilar as limestone and shale. At still higher confining pressures the
Mohr envelopes describing failure of intact rock eventually reach a point
of zero gradient on crossing a certain line, defined here as the critical state
line. This critical state is associated with a critical effective confining pressure
for each rock. It appears that the dilation normally associated with the shear-
ing of non-planar joints and faults may be completely suppressed if the applied
stress reaches the level of the critical effective confining pressure.

The empirical laws of friction and fracture were developed during a review
of laboratory-scale testing on rock and rock joints. In Part 11 of this review
these laws are applied to the interpretation of full-scale features. The follow-
ing topics are investigated; the conjugate shear angle of shear joints and
faults, the scale effect on frictional strength, the lack of correlation between
stress drops measured in laboratory-scale faulting experiments and those
back-calculated from major earthquakes, the strength corrosion caused by
moisture, and finally the possible effect of fault dilation and water pressure
changes at shallow depth in the crust.

INTRODUCTION

As recently as ten years ago Brace & Byerlee [1] sug-
gested that the coefficient of friction relevant to a par-
ticular geologic situation could not be predicted to
within better than a factor of two. This pessimistic
observation is understandable when one considers the
great range of stress to which rock and rock joints
are subjected in the various engineering disciplines. In
many rock engineering problems, the maximum effec-
tive normal stress acting across those joints considered
critical for stability will lie in the range 0.1-2.0 MN/m?
(1-20 kg/cm?). However, tectonophysicists are generally
interested in effective stress levels three orders of mag-
nitude larger than this, for example 100-2000 MN/m?
(1-20 kbars).

*Norwegian Geotechnical Institute, Oslo, Norway.

One of the most surprising conclusions arrived at
as a result of high pressure triaxial tests on intact rock
is the apparent lack of correlation between the fracture
strength of the intact rock and the frictional strength
of the resulting fault. Byerlee [2] has even gone so far
as to suggest that the frictional strength of faults devel-
oped through intact rock may be the same for all rocks,
independent of lithology.

At first sight there certainly appear to be reasonable
grounds for his suggestion. Figure | shows that the
peak shear strength of artificial faults (and tension frac-
tures) in a variety of rocks falls within a relatively nar-
row zone when the effective normal stress is of the same
order or greater than the unconfined compression
strength of the rocks concerned. However, rock
mechanics experience under low effective normal stress
levels indicates that the shear strength of joints can
vary within relatively wide limits as indicated in Fig. 2.
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Fig. 1. The shear strength of faults and tension fractures in rock
under high effective normal stress. Data from Byerlee [2.5.6] for
Westerly granite, Solenhofen limestone, Oak Hall limestone, Nahant
gabbro, Spruce Pine dunite. Cabramurra serpentinite, and Weber
sandstones—with and without pore pressures.

The obvious question that arises from a study of
these two figures is whether the widely different behav-
iour can actually be governed by the same frictional
law, or whether two fundamentally different behaviour
patterns are present, one for low stress and the other
for high stress. Furthermore, to what extent is frictional
strength related to the fracture strength of intact rock?

It will be shown in the following pages that the fric-
tional strength of interlocking rock surfaces (joints,
faults, fractures, etc.) is actually governed by the same
basic law, possibly for the whole range of brittle behav-
iour. The frictional strength for effective normal stress
levels as low as 0.01 kN/m? (10™% kg/cm?) up to more
than 1000 MN/m? (10 kbars) can apparently be
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Fig. 2. The peak shear strength of unfilled rock joints from the pub-

lished results of direct shear tests performed in the laboratory and
in situ (see [18] for references).

explained according to the results of shear tests per-
formed so far. In physical terms this stress range can
be visualized as a depth below surface varying from
less than 1 mm up to 40-50 km.

This extreme stress range is bounded at the lower
end by tilting tests, using laboratory specimens contain-
ing a through-going joint and letting the self-weight
of the upper half of the jointed specimens provide the
shear and normal stress. Sliding occurs when the joint
is steeply inclined. The coefficient of friction () may
be in excess of 10 under these extremely low stress con-
ditions.

The stress range is bounded at the upper end by
the brittle—ductile transition pressure [3-6]. Byerlee’s
results indicate that at room temperature, the transition
pressure is that at which the stress required to form
a fault surface (fracture strength) is equal to the stress
required to cause sliding on the fault surface ( frictional
strength). For granite, the coefficient of friction (u) at
the brittle—ductile transition pressure appears to be
only about 0.6, even for rough-surfaced faults.

Recent attempts to explain and predict the shear re-
sistance of non-planar rock joints seem to have been
based on the observed dilatant behaviour of granular
material such as sand. Newland & Allely [7] developed
an equation of the following type:

T = g, tan (P, + i) (1)

to denote the maximum shear strength t of a granular
mass when under an effective normal stress o,. The
angle i was the average angle of deviation of particle
displacements from the direction of the applied shear
stress, and @, was the angle of frictional sliding resist-
ance between particles. Rowe er al. [8] developed the
same relationship from energy considerations.

Patton [9, 10] and Goldstein et al.[11] also used
equation (1) to represent the shear strength of irregular
rock surfaces and broken rock when tested at low nor-
mal stresses. At high normal stresses it was assumed
that the Coulomb relationship:

t=c¢+ 0,tan @ (2)

would be valid, since most of the irregularities would
be sheared off. The resulting bi-linear envelope has
been widely used for interpreting recent test results. The
recognition that the shear strength of an irregular rock
surface can be zero at zero normal stress represents
a very big improvement over the earlier assumption
of linear (¢, @) characteristics.

The existence of curved peak strength envelopes for
intact rock has been known for many years, as shown
by Terzaghi [12]. However, it seems to be only recently
that curved envelopes for rock discontinuities have been
measured and understood. Jaeger [13], Krsmanovic¢ &
Langof [14], Lane & Heck [15], Patton [9] and Byer-
lee [5] are among those who first obtained curved rela-
tionships between 7 and o, for a variety of surfaces.
It is probable that if more investigators had been inter-
ested in low levels of normal stress or alternatively in
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very large ranges of normal stress, there would by now
be universal acceptance of a fundamentally non-linear
shear strength envelope for non-planar rock joints.

The strength components @, and i appearing in
equation (1) are usually termed the “basic angle of fric-
tion” and the “effective roughness™ or i value” for the
case of rock joints. Unfortunately the geometrical com-
ponent i for a given joint surface is difficult to estimate
without performing shear tests. Patton [9] suggested
that only the first-order irregularities would contribute
to the shear strength of joints beneath natural slopes,
since slope creep and weathering would probably cause
failure of the smaller scale asperities.

However, below the surface-weathered zone all scales
of roughness are likely to be important, as emphasised
later by Patton & Deere [16].

The development of a satisfactory empirical relation-
ship which can explain frictional behaviour both for
low and high stress levels forms the subject of the fol-
lowing pages. Its performance in predicting the shear
strength of faults developed under high pressure triaxial
tests is reviewed in subsequent pages, based on the dis-
covery of a simple relationship between frictional
strength and fracture strength. The shear strength of
intact rock is investigated in the latter half of Part I.
before going on to consider full scale behaviour in the
Earth’s crust in Part IL

PART 1

EMPIRICAL LAW OF FRICTION—
LOW STRESS

Figure 3 shows the results of direct shear tests per-
formed on a variety of artificial tension fractures gener-
ated through realistic brittle model materials. The left
hand diagram (A) shows the total friction angle (arctan
u = arctan t/g,, where t = peak shear strength and
o, = effective normal stress) plotted against the peak
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Fig. 3. Peak shear strength results obtained from direct shear tests
performed on tension fractures in brittle model materials [17].

*This one-dimensional joint or fault dilation should not be con-
fused with the volumetric dilatancy studied by Brace et al. [19] and
others.

dilation angle d° which is defined as the instantaneous
inclination of the shearing path at peak strength, rela-
tive to the mean plane of the joint or fracture.* Exper-
imental evidence indicates that joints and fractures
dilate most strongly when the shear displacement corre-
sponds to the instant of peak shear strength. The peak
dilation angle d! is in fact the maximum dilation angle
for a given level of normal stress [18].

The right hand diagram (B) of Fig. 3 also shows the
peak dilation angle plotted as abscissa. However, the
ordinate is the dimensionless ratio ¢,/o, relevant to
each test, where g, = the uniaxial compression strength
of the material. The solid lines extrapolated through
the scatter of data are the best-fit lines obtained by
the method of least squares. A dotted line is drawn
in each diagram, involving a small rotation from the
best fit line. The modified lines were drawn so that
the following simple relationships could be approxi-
mated:

t/a, = tan (2d, + 30°) 3)

4)

The basic friction angle ¢, for the model materials
ranged from 285 to 31.5" (¢, = residual shear
strength of flat non-dilatant rock surfaces, dry or wet).
The majority of unweathered rock surfaces have values
of ¢, ranging from 25° to 35°, at least at medium stress
levels, for example o, = 0.1-10 MN/m? (1-100 kg/m?).
Experimental values reported in the literature are sum-
marized in Table 1.

The approximate peak shear strength envelope for
the model tension fractures is obtained by eliminating
d, between equations (3) and (4):

t=o0, tan<20 1og,o(%> + 300).

It has been found that for low and medium stress levels
this equation gives a close approximation to the peak
shear strength of interlocking rough-surfaced joints, ten-
sion fractures and artificial faults. In fact, if the uncon-
fined compression strength (c.) of a rock is known, and
the interlocking rock surfaces are unweathered (as
would be the case for an artificial fault induced in a
triaxial test on intact rock), then the peak shear
strength envelope can actually be predicted, as shown
in Fig. 4. Other examples of strength prediction were
given by Barton [18], so will not be reviewed here.

d, = 10 log,, (6./0,).

©)]

Effect of surface roughness

Equation (5) can be modified to incorporate different
degrees of surface roughness. At the smoothest end of
the spectrum, the logarithmic function describing the
shear strength contribution of asperities must obviously
disappear, leaving the linear function:

T = 0, tan ¢,

(6)

On the other hand, the roughest end of the spectrum
seems to be correctly described by the coefficient (20)
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TABLE 1. BASIC FRICTION ANGLE FOR VARIOUS ROCKS, OBTAINED FROM
SAND-BLASTED, ROUGH-SAWN AND RESIDUAL SURFACES
(1 MN/m? = 10 kg/cm?)

Rock Moisture ¢, (MN/m?)  ¢f References®
Amphibolite dry 0.1-42 32 a
Basalt dry 0.1-85 35-38 b
wet 0.1-7.9 31-36 b
Conglomerate dry 0.3-34 35 c
Chalk wet 0-04 30 d
Dolomite dry 0.1-7.2 31-37 b
wet 0.1-7.2 27-35 b
Gneiss (schistose) dry 0.1-8.1 26-29 b
wet 0.1-7.9 23-26 b
Granite (f.g) dry 0.1-7.5 31-35 b
wet 0.1-74 29-31 b
Granite (c.g.) dry 0.1-7.3 31-35 b
wet 0.1-7.5 31-33 b
Limestone dry 0-0.5 33-39 e
wet 0-0.5 33-36 e
dry 0.1-7.1 3740 b
wet 0.1-7.1 35-38 b
dry 0.1-8.3 37-39 b
wet 0.1-8.3 35 b
Porphyry dry 0-1.0 31 f
dry 4.1-13.3 31 f
Sandstone dry 0-0.5 26-35 e
wet 0-0.5 25-33 e
wet 0-0.3 29 g
dry 03-3.0 31-33 c
dry 0.1-7.0 32-34 b
wet 0.1-7.3 31-34 b
Shale wet 0-0.3 27 g
Siltstone wet 0-0.3 31 g
dry 0.1-7.5 31-33 b
wet 0.1-7.2 27-31 b
Slate dry 0-1.1 25-30 f

“(a) Wallace et al. [20]; (b) Coulson [21]; (c) Krsmanovic [22];
(d) Hutchinson [23]; (e) Patton [9]; (f) Barton [24]; (g) Ripley &
Lee [25].

appearing in equation (5). Joints of intermediate rough-
ness are in fact found to have intermediate values of
the coefficient. The generalized form of equation (5) is

given below,
=0, tan(JRClogm<JfS> + ¢,,).

The joint roughness coefficient (JRC) represents a
sliding scale of roughness which varies from approx
20 to 0, from the roughest to the smoothest end of
the spectrum. The joint wall compressive strength (JCS)
is equal to the unconfined compression strength (o)
of the rock if the joint is unweathered. but may reduce
to approx (l1/4 o) if the joint walls are weathered.
Barton and Choubey [27] describe how the (JCS) value
can be estimated in the field or in the laboratory using
a Schmidt hammer.

The physical appearance of equation (7) for different
values of the joint roughness coefficient (JRC) is seen
from Fig. 5. The shear strength envelopes for rough,
undulating joints (class A) are steeply inclined at low
effective normal stress levels. However, in view of the
safety requirements of rock engineering structures, it
has been suggested that values of arctan t/g, larger
than 70° and any possible ‘cohesion’ intercept should
be discounted, hence the curvi-linear envelopes in the
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Fig. 4. Plotted points represent the shear strength of artificial faults

formed during triaxial tests on 4 coal measure rocks [26]. The uncon-

fined compression strengths (o) measured at zero confining pressure

are given in each case. The values were substituted in equation (5)
to give the predicted peak shear strength envelopes.

left hand diagram of Fig. 5. The linear portion is used
when JCS/a, = 100.

The joint wall compressive strength (JCS) is seen
from Fig. 5 to be a very important parameter in the
shear strength of rough joints when stress levels are
low as in most rock engineering problems. The wide
spectrum of results predicted for rough-undulating class
A joints (JCR = 20) is very similar to the scatter found
in practice (see Fig. 2). Joints with lower degrees of
roughness are progressively less affected by the value
of (JCS), since asperity failure plays less and less role
as the joint roughness coefficient (JRC) reduces to zero.
Mineralogy (¢,) will increasingly dominate the behav-
iour at the smooth end of the spectrum.

A very important conclusion can be drawn from Fig.
5. Since the compressive strength of the joint wall is
an important component of the shear strength, any pro-
cess that causes a reduction in this compressive
strength should result in reduced shear strength. In-
creased weathering, moisture content, time of failure, and
scale cause a marked reduction in the compressive
strength of rocks, and hence may also cause a reduction
in the peak shear strength of joints. Rough-undulating
joints should be most affected and smooth-planar joints
least of all. Published results concerning weathered and
saturated joints, which were reviewed by Barton [18]
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Fig. 5. Classification of roughness and prediction of shear strength for non-planar rock joints. For simplicity ¢, is assumed
to be 30° throughout. Each curve is numbered with the appropriate value of (JCS), in units of MN/m?.

suggest that this hypothesis may be essentially correct.
It will be shown later that the scale effect—a very im-
portant parameter for in-situ prediction—also fits well
into the above hypothesis.

Shear strength prediction at low stress

Figure 6 shows the generalized peak shear strength
criterion. equation (7). in graphical form as a semi-log
plot. The sloping lines which radiate out from the ‘ori-
gin’ (¢, = 30° assumed here) represent the peak shear
strength for surfaces with roughness coefficients (JRC)
equal to 1, 5, 10, 15, 20, and 25. The open circles which
mostly cluster between (JRC) values of 18 and 25 are
the data points obtained from Fig. 3, and represent
the peak shear strength of tension fractures in brittle
model materials.

The low stress side of the diagram (JCS/o, from 10?
to 10°) shows a series of dotted lines, each of them
drawn between the results of 2 shear tests performed
on the same laboratory joint specimen, which were
mostly of 10 cm x 10 cm in area. The 10 pairs of data
shown here are relevant to 10 specimens containing
fairly smooth, planar joints in a granitic intrusive rock,
aplite.

Three tilting tests were performed on each of these
specimens before shearing under higher stress levels in
a shear box. In most of the tilting tests, sliding began
when the joints were inclined at between 50° and 70°,
as shown by the points at the low stress side of Fig.

6. The effective normal stress is so low when sliding
occurs that no damage results. Tilting tests can there-
fore be repeated over and over again without reducing
the strength. The mean (JCS) value for this set of joints
was 122.5 MN/m? (1225 kg/cm?), and the effective nor-
mal stress when sliding occurred was mostly between
0.08 and 0.2 kN/m? (0.0008-0.002 kg/cm?).
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Fig. 6. The empirical law of friction for rock joints in graphical form.

Open circles represent the data for model tension fractures obtained

from Fig. 3. The dotted lines connect pairs of shear tests performed

on the same rock joint, first at very low stress, then at conventional
normal stress levels.
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The data points plotted at the high stress end of
the dotted lines (JCS/o, from 102 to 10%) are the results
of the shear tests performed in a conventional direct
shear box, using the same joints as before. Ignoring
the inevitable scatter caused by occasional lack of inter-
lock, it is seen that the results of a shear test under
very low stress levels can give quite a fair estimate of
the shear strength at stress levels four orders of magni-
tude greater, if the low stress results are extrapolated
using the appropriate (JRC) value.

Naturally, if conventional shear tests have already
been performed, it is a simple matter to back-calculate
(JRC) from the results using equation (7). provided that
(JCS) and ¢, can be estimated. In theory. a single back-
calculation will produce the correct peak strength en-
velope for extrapolation purposes. The reliability is
obviously improved if more than one test is performed.

Shear strength at extremely low stress

The experimental data shown in Fig. 2 shows
several plotted points with values of arctan (t/g,) of
about 80" when the effective normal stress is below
0.5MN/m? (5 kg/m?). Some of the other high values
reported in the literature are shown in Table 2. The
direct shear tests and tilting tests performed on rough
interlocking joints by Barton & Choubey [27] have in
fact shown values of arctan (t/a,) in excess of 88° when
the effective normal stress is lower than about 0.05
kN/m? (0.0005 kg/cm?).

A shear strength envelope for rough joints having
a vertical tangent at or close to the shear stress axis
instead of a ‘cohesion’ intercept is inherently satisfying
as a limiting condition since. unless asperities are in-
clined at more than about 60 to the mean plane of
the joint (¢, + 60" = 90 ). a genuine cohesion intercept
as exhibited by intact rock seems unlikely.

The use of a ‘cohesion’ intercept for rock joints is
inherently dangerous, even if the extrapolation is made
from the mean effective normal stress level appropriate
to the particular engineering problem.

A region of shear strength that does not exist will
have been assumed in the design, since in most prob-
lems the range of effective normal stress extends to

zero. The Coulomb concept of cohesion (¢) and friction
() is really no more than a simple mathematical con-
venience since ‘cohesion’ is not a constant, either for
rock or for soils.

Examination of Fig. 6 leads to an intriguing question
concerning the peak shear strength of rock surfaces at
extremely low stress levels. Is it possible that the peak
shear strength envelopes of all natural mating rock sur-

Jaces display vertical tangency at “zero’ effective normal

stress, assuming that the rock surfaces are not optically
flat of finely polished? A linear extrapolation of Fig.
6 to even lower stress levels suggests that this might
be true, at least when there is measureable non-planar-
ity (i.e. JRC > 5). On a microscopic scale even ‘smooth’
rock surfaces in contact probably resemble interlocking
mountainous terrains.

EMPIRICAL LAW OF FRICTION—
HIGH STRESS

The empirical law of friction, equation (7), indicates
that when joints are unweathered, the unconfined com-
pression strength (o) can be substituted for the joint
wall compressive strength (JCS). This form of the equa-
tion works well at the low stress levels appropriate to
most rock engineering problems, provided of course
that the joints are unweathered. However, if the effec-
tive normal stress is high, or if the unconfined compres-
sion strength of the rock is low, the dimensionless ratio
(0./a,) reduces towards unity, and the resultant shear
strength theoretically approaches the value given by
equation (6). i.e. T = 6, tan ¢,

Contact area and confining effect

Attempts to fit equation (7) to the results of triaxial
shearing tests on artificial faults performed at stress
levels of several hundred MN/m?, indicate that there
is an increasing error between prediction and test
results, if the effective normal stress (g,) exceeds the
rock’s unconfined compressive strength (o). The
measured shear strength is always appreciably higher
than that predicted.

TABLE 2. MAXIMUM VALUES OF PEAK (T"‘O',,l MEASURED ON JOINTS DURING TESTS AT LOW NORMAL

STRESS (I MN/m? = 10kg/cm?)
T/0, arctan
Description of discontinuity (MN/m?) (z/a,) Reference
Limestone: slightly rough bedding surface 0.68/0.16 77" Goodman [28]
0.66/0.21 72
1.68/0.60 71°
Limestone: rough bedding surface 0.68/0.31 66" Goodman [28]
2.07/0.68 72°
Shale: closely jointed seam in limestone 0.06/0.02 71° Goodman [28]
0.06/0.02 70°
Quartzite, gneiss and amphibolite _
discontinuities beneath natural slopes: — 80 Paulding [29]
discontinuities beneath excavated slopes: e 75

Granite: rough, undulating, artificial
extension fractures

0.45/0.15 72 Rengers [30]
69

0.92/0.35
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The reason for the discrepancy is presumably due
to the effect of confinement on the compressive strength
of rock asperities. At the low stress levels appropriate
to most rock engineering problems the contact area
between joint walls is extremely small [31]. The
strength of the asperities can therefore be considered
as the unconfined strength. However, as the level of
(0,) approaches the value of (o), the area of contact
across the joint or fault increases, probably as a result
of elastic displacement and possible local failure of any
mismatching asperities.

The increasing contact area presumably causes the
compressive strength of the asperities themselves to in-
crease due to the more effective confinement. If the
(JCS) value appearing in equation (7) develops into the
confined compression strength of the rock which is
equal to the differential stress (o,—03), then equation
(7) can apparently be generalized as follows:

1=o0, tan(JRC logm(a’—;—o’-) + ¢e,> ®)

where ¢, is the axial stress at failure, and o5 is the
effective confining pressure. When ¢, = 0, equation (8)
has the same form as equation (7). Preliminary, but
rather persuasive experimental evidence for the validity
of equation (8) will now be given.

Preliminary review of experimental data

Figure 7 shows the results of triaxial compression
tests performed on intact cylinders of Weber sandstone
by Byerlee [2]. Figure 8 shows the results of the sub-
sequent frictional tests performed on the faults induced
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Fig. 7. Differential stress at failure as a function of effective confining

pressure for Weber sandstones A, B and C after Byerlee [2]. The

solid symbols represent the results of tests with pore pressures. The
curved envelopes are explained in the text.

by failure of the intact cylinders. Byerlee calculated the
normal and shear stresses for sliding on the fault sur-
faces from the axial load, confining pressure and fault
angle data using the following well known transforma-
tions:

t=1%(0, — 03)sin 28 ©

0, = 3(0, + 03) — §(0, — 03)c0s 28 (10)
where f§ is the angle the fault makes with the major
effective principal stress o,. The experimental data
shown in Fig. 7 was analysed by measuring the coor-
dinates from Byerlee’s original figures. Values of (o,)
appropriate to the differential stress (¢,—03) were esti-
mated using equation (10), with an assumed fault angle
(B) of 30° which appears to be a reasonable mean value
according to the results of high pressure triaxial tests
on rock. Mogi [4, 32] shows values of f that range from
about 20° to 35°, while Raleigh & Paterson [33] show
values between 25° and 39°, with an average value of
31°. The angle is found to increase with confining stress
if the shear strength envelope is curved, as predicted
by the Mohr relation:

B =45 —¢)2 (11

where ¢ is the inclination of the Mohr envelope at
the point of tangency.

The experimental values of (6,-03) and the values
of (s,) as estimated above were substituted in equation
(8) for each of the the test results shown in Fig. 7.
An appropriate (JRC) value of 20 and a (¢,) value of
30° were assumed. The predicted peak shear strength
of the faults is shown in Fig. 9. The two solid line
envelopes drawn in Fig. 9. and the dotted line envel-
opes drawn through the experimental data in Fig. 8
are identical. Their origin will be explained shortly.

The remarkable agreement between prediction and
experiment leaves little doubt that equations (7) and
(8) have rather special properties. The predicted data
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actually exhibits less scatter than Byerlee’s experimental
results and lies completely within the envelope of his
data. Yet, it also shows sensitivity to the lower strength
of Weber A compared to Weker B (Fig. 7), which
results in a slightly lower frictional strength for Weber
A than Weber B (Fig. 8).

Byerlee [2] states that “there is no correlation
between the fracture strength and the frictonal strength
of the rock. For instance, Weber B has a consistently
higher fracture strength than either Weber A or C, but
all three rocks have much the same frictional strength”.
It will be shown later that the slight error in this
assumption may have far reaching consequences on
the assumed value of the stress required to reach the
brittle-ductile transition pressure within the Earth’s
crust, considering full scale dimensions.

The above prediction of fault strength depends for
its accuracy on correct assumptions regarding the value
of (JRC) and (¢,), besides the value of (f) discussed
above. Numerous trials have shown that (JRC) = 20
is a very realistic value for rough-surfaced natural
joints, and also is relevant to artificial tension fractures
in rock (and brittle model material) and to fractures
developed under shearing stresses such as in the triaxial
apparatus. These fractures are far from smooth before
they are sheared beyond peak shear strength. (As resi-
dual strength is approached, there is a gradual fall
of (JCR), following what may be an initially rapid fall
from peak strength).

The assumed value (¢,) of 30° appears from the
literature to be very realistic for sandstone. Table 1
shows 6 sets of experimental data for sandstones with
the following ranges of ¢,: 26°-35°, 25°-33°, 29°,
31°-33°, 32°-34°, 31°-34°. The mean value appears to
be approx 31°.

Two-stage prediction of shear strength
The shear strength prediction illustrated in Fig. 9

*Note: the range of g, values for Weber sandstones was not given
by Byerlee [2], hence the estimates.

was based on experimental results of differential stress
(0,-05) at failure as a function of effective confining
pressure (03). The fact that this fracture data produced
an extremely accurate prediction of frictional strength
using equation (8) does nothing more than verify the
correctness of the relationship. It would be even more
useful if expensive high pressure triaxial testing could
be partially replaced by accurate empirical models,
both for the fracture strength and the frictional strength.
In view of the fact that these small scale triaxial tests
can hardly be taken as accurate models of faulting
phenomena in the Earth’s crust, an empirical model such
as equation (8) may be more than justified, particularly
since it appears that the scale effect can be taken into
consideration, as shown later.

Empirical relationships to describe the compressive
strength of intact rock as a function of confining pres-
sure are to be found in great numbers in rock
mechanics literature. It is not the intention here to
review these, but merely to utilize one of the better
ones.

In 1965 Murrell [34] proposed a relation of the fol-
lowing type:

o, = Edf + o, (12)

where (E) and (F) are constants. Hoek and
Bieniawski [35] preferred a dimensionless form, express-
ing triaxial data in terms of ¢,/6. and o3/0,. Subse-
quently, Bieniawski [36] expressed equation (12) in
dimensionless terms:

A
A k("i) +1
UI GC

where (k) is a constant. This may alternatively be written:

A
a
o, = kac(;3> + 0.
¢,

Bieniawski determined the constants (4) and (k) from
triaxial tests on more than 400 test specimens consist-
ing of 5 quartzites (91 specimens), 5 sandstones (109
specimens), 1 norite (35 specimens), 4 mudstones (86
specimens), and 4 siltstones (91 specimens). Choosing
a constant value for (4) equal to 0.75, he suggested
a range of (k) from 3.0 to 5.0 for the above rock types.
The highest value (5.0) fits the norite data, while the
lowest value (3.0) fits the siltstones and mudstones. It
is apparent that if the unconfined compression strength
(6.) can be estimated, and an appropriate value of (k)
chosen, the confined compression strength (o,-03) of
many rocks may be estimated reasonably closely.

The two curved envelopes drawn through Byerlee's
data [2] for sandstones (see Fig. 7) were obtained from
equation (14) using the following assumed values:

(1) upper envelope (s) = 150 MN/m? (1.5 kbar),
(k) = 5.0

(2) lower envelope (¢) = 100 MN/m? (1.0 kbar),
(k) = 4.0*

One further assumption is required before equation
(14) can be evaluated. We need a simple relation
between o3 and g,. For medium stress levels it is realis-

(13)

(14)
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tic to assume that ¢; = 40, (approx) as seen from a
simple Mohr construction. If the resulting values of
(0,—03) and (o,) are substituted in equation (8), with
the same values of (JRC) and (¢,) as before, then the
2 curved envelopes shown in Fig. 9 are obtained. The
same envelopes are drawn as dotted lines in Fig. 8,
which showed Byerlee’s experimental data.

Detailed review of experimental data

Further evidence for the validity of equation (8) is
required from lithologically dissimilar rocks, since the
results obtained from the 3 Weber sandstones A, B and
C (dark red, light pink, and grey respectively) may have
been fortuitous due to the lithological similarity of the
three types.

An ideal set of experimental data is provided by
Raleigh & Paterson ([33], Table 1), Mogi ([32], Fig.
10a), Byerlee ([5], Fig. 7) and Byerlee ([6], Figs. 5 and
6). The variation of differential stress (¢,—03) with effec-
tive confining pressure (o) for the 6 different rocks
is shown in Fig. 10. Wide variations in behaviour are
evident.

Figure 11 shows the results of the subsequent fric-
tional tests performed on the faults induced by failure
of the intact cylinders. As before, the stresses acting
on the fault planes were calculated using the transfor-
mation equations (9) and (10).

For the purposes of strength prediction, the exper-
imental data shown in Fig. 10 was analysed as in the
case of the Weber sandstones. Values of (s,) appro-
priate to the differential stress (o,—03) were estimated
using equation (10), with an assumed fault angle (B)
of 30° as previously discussed. These results were sub-
stituted in equation (8) for each of the test results
shown in Fig. 10. (JRC) values of 20 and (¢;) values
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of 30° were assumed throughout. The predicted peak
shear strength of the faults is shown in Fig. 12.

The predicted data are scattered more widely than
the experimental data shown in Fig. 11 and also lie
a little low. The reasons for this will be analysed in
some detail as they are quite instructive.

Firstly, concerning the limestone—the assumption of
(B) equal to 30° appears very reasonable. Byerlee [6]
observed that “near the pressure of the brittle-ductile
transition, the angle that the fault surfaces made with
the axis of the specimens was close to 30° for all the
rocks”. The limestone specimens, especially the Solen-
hofen variety, passed through the transition at medium
confining pressures, so the assumed 30° cannot be the
cause of any major discrepancy.

The most obvious reason for the low predicted shear
strength for the faults in the Solenhofen and Oak Hall
limestones (Fig. 12) is the ductility. For example, Byer-
lee’s experimental data (Fig. 11) includes no data points
for Solenhofen limestone above an effective normal
stress of about 120 MN/m? (1.2 kbar). Presumably, this
is due to the difficulty of defining a fault angle when
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Fig. 12. Predicted peak shear strength of the faults developed in the

triaxial tests shown in Fig. 10, according to the proposed frictional

law, equation (8). For simplicity ¢, was assumed to be 30° in each

case. Open symbols were derived from the ductile failure data shown
in Fig. 10.
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failure is actually ductile. The corresponding predicted
points (open symbols in Fig. 12) should therefore be
excluded from consideration.

It may be noted from Fig. 11 that at low stress
levels—before the onset of ductility—both limestones
display higher frictional strength than any of the other
rocks, and considerably higher shear strength than that
predicted in Fig. 12. The reason for this is the high
value of ¢, apparently associated with limestones. In
Table 1, 6 sets of experimental data for limestones are
tabulated, which show the following ranges of ¢,:
33°-39°, 33°-36°, 37°—40°, 35°-38°, 37°-39°, 35°. The
mean value appears to be approx 37°. If this value had
been used in equation (8) for predicting the shear
strength of the faults in both limestones in place of
30°, the predicted data would lie exactly 7° higher, as
measured from the origin (arctan /o, increases 7°).
This would bring the limestone predictions very close
to the experimental values.

The two-stage method of shear strength prediction
employing both equations (8) and (14) can also be used
to approximate the experimental results presented in
Figs. 10 and 11. Values of (k) ranging from 2.0 (lime-
stone) to 6.0 (granite) together with appropriate
assumptions for ¢, as outlined above, provide shear
strength predictions very close to those actually
measured.

THE BRITTLE-DUCTILE TRANSITION

Mogi [4] observed that the fracture behaviour of
rocks changes from brittle to ductile with increasing
confining pressure, the transition pressure being higher
for stronger rocks. For silicate rocks Mogi suggested
a linear boundary between brittle and ductile behaviour
as below:

0,03 = 34 03. (15)

In other words, if the confined compression strength
is greater than 3.4 o5, the behaviour will be brittle,
and vice versa. At the same time, Mogi observed that
the transition pressure of weaker marbles and lime-
stones was appreciably lower, the transition boundary
being curved (concave downward).

Various kinds of silicate rocks apparently have an
almost identical coefficient of friction u = 0.65 (arctan
t/a, = 33°) at the transition, while for carbonate rocks
the value is frequently over 1.0 (arctan t/o, = 45°)
according to Mogi [4]. Shales, which are known to
have a higher transition pressure than other silicate
rocks, were not included in Mogi’s data.

A physical explanation for the phenomenon of the
brittle-ductile transition was given by Orowan [3]. He
suggested that at a sufficiently high confining pressure,
the shear strength of a fault would eventually be as
high as the shear stress required to develop the fault
through the intact rock. If this was the case, there
would be no stress drop when the fault formed. This
hypothesis seems to be consistent with the changing

shape of stress—strain curves as the transition to ductile
(stable) behaviour is approached.

Byerlee [6] used a simple technique for investigating
the brittle-ductile transition. He drew a single curved
envelope through collected frictional data for sliding
tests on faults (see Fig. 11) and transformed this curved
1, 0, envelope into ¢, and o3 coordinates using equa-
tions (9) and (10). He assumed a fault angle (8) = 30°
for the 6 rock types investigated, thereby simplifying
the transformation as follows:

0, — o3 =231 (16)

(17)

The resulting non-linear relationship between the differ-
ential stress and the confining pressure is drawn in Fig.
10.

Byerlee reasoned as follows: if Orowan’s [3] friction
hypothesis for the brittle-ductile transition in rocks was
valid, the rock should be brittle if at any confining
pressure the differential stress that a reck could support
at failure fell above Byerlee’s curve (Fig. 10). The rock
should be ductile if the differential stress fell below the
curve.

The distribution of open and closed symbols shown
in Fig. 10 which indicate ductile and brittle failure re-
spectively, proved that the frictional hypothesis was
essentially correct.

g3 =g, — 0.587.

Variable transition pressures due to ¢y, values

Significantly, Byerlee [6] did note ‘slight departures’
from his transition curve, which were accounted for
by the “small dependence of friction on rock type”.
He noted for example, that the transition pressure was
slightly lower for the Oak Hall limestone. Byerlee also
noted that the transition pressure for shale was very
much higher than his curve, “because the frictional
shear stress required to cause sliding on surfaces of
shale at any given normal stress is very much lower
than it is for other rocks”. All these interesting observa-
tions point to variable frictional strength as the chief
cause for variable transition pressure. A single curve for
all rocks is then inadmissable as a general transition
boundary between brittle and ductile behaviour.

It thus appears that the potential range of ¢, associ-
ated with different types of rock may be an important
cause of the variable transition pressures observed. As
will be shown below, this variable ¢, has a marked
effect on the theoretical peak shear strength of joints
and faults. If, as seems likely, ¢, values affect the fric-
tion strength of pre-existing faults more than the frac-
ture strength of the intact rock, then low values of ¢,
will tend to ‘delay’ the transition, and high values will
‘accelerate’ it. The pressure at which the transition
occurs will also be affected by the confined strength
of the rock. The transition pressure should in fact
depend on both the value of ¢,, and the value of
(0,~03) appropriate to the confining pressure a;.

When ¢, has a value different from 30°, all the envel-
opes drawn in Fig. 6 will be moved up or down the
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ordinate. The focal point of all the envelopes is in fact
the value of ¢, The 32 sets of experimental data for
¢, given in Table 1 show a common range of 25-35°
as mentioned earlier. However, extreme values of 23°
(schistose gneiss) and 40° (limestone) are found. Thus,
a wide range of shear strength is theoretically possible,
even for the same value (JRC) and (0,-03)/0,.

It is perhaps worth summarizing the experimental
details for measuring ¢, (Barton. [24]). It is the value
of arctan (t/s,) obtained from residual shear tests on
flat unweathered rock surfaces which are normally pre-
pared by sawing, but which can conveniently be sand-
blasted between tests.

It appears that the value of (¢,) of rock is most
closely simulated by these artificial surfaces when shear
force displacement characteristics show no appreciable
peak, nor fall to residual. (This is analogous to behav-
iour at the transition.) In addition, the surfaces should
not be so smooth that stick-slip oscillations occur, nor
so smooth that the frictional resistance rises due to
roughening of the smooth surfaces with increased dis-
placement. In other words, the granular texture of the
rock should be exposed, but not to the extent that
macroscopic interlocking and dilation occur. Sand-
blasting of flat sawn surfaces appears to satisfy all
these requirements. The surfaces may be dry or wet
according to the desired application of the results, i.e.
whether the joints are dry or saturated in situ. The
effect of water on these unpolished, flat surfaces is, how-
ever, not so great as one might expect. The results given
in Table 1 indicate extreme ranges for saturated
samples of 23° (schistose gneiss) to 38° (limestone), and
for dry samples: 25° (slate) to 40° (limestone).

Value of arctan (t/a,) at the transition

If the experimental data presented in Fig. 11 is ana-
lysed, it is found that the lowest values of arctan (t/a,)
for each of the rock types range from about 33° to
42°, as tabulated below. The lowest values for each rock
correspond to those tests performed close to the brittle—
ductile transition. In fact, if the data is scrutinized
closely, it will be seen that some of the ‘brittle’ failures
plotted in Fig. 10 have not been included by Byerlee
in Fig. 11, so some of the values of arctan (t/g,) at
the transition are probably 2° or 3° lower than the
values given below:

/0, arctan (1/a,)
Solenhofen limestone 0.90 42°
Oak Hall limestone 0.90 42°
Nahant gabbro 0.66 33°
Spruce Pine dunite 0.81 39°
Cabramurra serpentinite 0.71 35°
Westerly granite 0.65 33

It may be observed that the above values are strik-
ingly sensitive to the different ¢, values to be expected
of the given rock types, though perhaps 4° or 5° too
high.

Careful analysis of the (¢,~03) vs (o5) values for the
‘last’ brittle failure and the ‘first” ductile failure (closed

and open symbols in Fig. 10), indicate that the ratio
of (¢,~03)/a, for an assumed fault angle of 30° averages
1.68 and 1.58 respectively for the 6 rock types. The
empirical law of friction, equation (8), would therefore
predict values of arctan (t/s,) that are 4.5° and 4.0°
in excess of ¢, Since the ‘last’ brittle failure and the
‘first’ ductile failure presumably lie on either side of
the brittle-ductile transition, it seems very reasonable
to conclude that the shear strength at the transition
is governed by following relationship:

0, = ¢, + 2d,.
This is of the same form as equation (3). By implica-

tion, at high stress levels (o, > o.), equation (4) can
be modified to the following form:

e 1010gm<"‘ = "3).
a"

If the above hypothesis is correct, it implies that the
peak dilation angle (d,) for faults sheared at the brittle—
ductile transition pressure average about 2° for these
6 rock types, with a range of about 1-3°.

(18)

(19)

THE CRITICAL STATE FOR ROCK

It seems inherently reasonable that when the effective
normal stress mobilized on a potential failure plane
finally reaches the level of the confined compression
strength (0, = 0,-03), the one-dimensional dilation nor-
mally associated with shearing will be suppressed. If
it could be shown that at this same state of stress the
volumetric dilation was also suppressed, then a signifi-
cant ‘critical state’ for rock could be defined. For
example, at pressures lower than a certain effective con-
fining pressure volumetric dilation of the type observed
by Brace et al. [19] would occur, together with the one-
dimensional dilation across the mobilized failure sur-
faces. At higher pressures the signs of both types of
dilation would become negative.

So far as the author is aware, there is no experimen-
tal data available specifically relating the 2 forms of
dilation discussed above. However, a change in sign
of the volumetric dilation under high effective confining
pressures has been noted, for example by Cornet &
Fairhurst [37]. In view of the experimental difficulties
a simpler definition of the critical state is required.

The critical state for initially intact rock will be
defined as the stress condition under which the Mohr
envelope of peak shear strength reaches a point of zero
gradient. This represents the maximum possible shear
strength of the rock. For each rock there will be a
critical effective confining pressure above which shear
strength cannot be made to increase. This pressure is
represented by o3 in Fig. 13, and the critical point
of the envelope is point C.

It is of paramount interest to see how the above
definition of the critical state for initially intact rock
corresponds with the condition ¢, = g,—g; for the
mobilized failure surfaces or faults produced in a con-
ventional ‘triaxial’ apparatus (¢, = g;). It will be
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4n Critical Srate 4

Fig. 13. The proposed critical state is represented by point C. It
lies on the critical state line which as a gradient tan ¢, = 4. The
critical effective confining pressure is equal to o5 in this figure.

remembered from equation (19) that ¢, = ¢,-0; theor-
etically represents the stress condition under which the
one-dimensional dilation occurring at peak strength is
finally suppressed (d, = 0°).

The normal stress mobilized on the conjugate 45°
failure planes 28 = 90°, equation (11), at the critical
point C is equal to (o, + o3), where o, and o; rep-
resent the effective principal stresses defining the critical
state. It follows that if ¢, = ¢,~0, represents the ‘criti-
cal state’ for the mobilized failure surfaces, then:

3o, +03) =0, -0 (20

or
@21

Circle No. 4 in Fig. 13 has been drawn with these
values. It will be seen that the ultimate shear strength
represented by point C is equal to the critical effective
confining pressure (¢3) required to reach the critical
state. The normal stress is equal to 2 ¢;. The critical
state line (OC) will subtend an angle (¢,.) given by the
following relationship:

o, = 303.

g, — 0
tan ¢, = ———>
o, + 03
Thus, with ¢, = 303, tan ¢, = L and ¢, = 26.6°.
The tangent point D to the same critical stress circle
subtends and angle 6, where:

22

0y — 03

sinf, = —.
o, + 03

(23)

From equation (21) it will be seen that 6. = 30° (sin
0. = %). This can be likened to the hypothetical ‘internal
friction angle’ ¢.

If it can be demonstrated that the stress condition
o, = 30, at peak shear strength does indeed represent
the stress condition required to reach the point of maxi-
mum shear strength (the top of the Mohr envelope)
for rocks, then an important relationship between the
behaviour of intact rock and faulted rock will have

been established. It would also help to explain the ex-
tremely close fit between experimental data and the em-
pirical law of friction, equation (8), which incorporates
the relation (¢,-03)/c, = 1 as one of its limiting condi-
tions.

Review of experimental data

The triaxial test results plotted in Fig. 10 provide
an immediate source of data for testing the proposed
critical state theory. The straight line drawn in Fig.
10 has the same gradient as represented in equation
(21), i.e. 6,~03 = 2 o3. It is apparent that the Solen-
hofen limestone reduces in strength on crossing the
critical state line.

Figure 14 shows a dimensionless plot of the same
triaxial data together with additional high stress data
for Westerly granite obtained from Byerlee ([5], Fig.
8), and Mogi ([32], Table 2). The dimensionless term
was obtained by normalizing the differential stress with
the unconfined compression strength ¢,. It is apparent
from the figure that ¢, = 3 o3 is a special condition
for the 6 rock types represented. The granite in particu-
lar seems Lo be particularly ‘reluctant’ to cross the pro-
posed critical state. In passing, it should be noted that
the straight lines:

9179 _ Moyjo, + 10

GC

represent quite good approximations to the shear
strength of intact rock up to the critical state condition.
The gradients (M) for Solenhofen limestone, Oak Hall
limestone, Nahant gabbro and Westerly granite are
equal to approx. 3, 7, 9 and 30, respectively. These
linear relationships are made use of later.

A large body of experimental triaxial data for rocks
was assembled by Mogi [4] from a variety of sources.

(24)
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Fig. 14. Dimensionless plot of triaxial data obtained from Fig. 10.
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Fig. 15. Triaxial data for dry silicate rocks compiled by Mogi [4].

(Fig. 2). All tests were performed at room temperature. Brittle, transit-

ional and ductile behaviours are indicated by closed symbols, half-
open symbols and open symbols respectively.

This data is reproduced in Figs. 15 and 16, together
with the proposed critical state line. It should be noted
that an envelope that reaches zero gradient when plot-
ted in terms of the effective principal stresses ¢, and
a5 will have a corresponding point of zero gradient
when plotted as a Mohr envelope in terms of the mobi-
lized stresses 7 and o,.

In general, it appears that o, = 303 can be taken
as a satisfactory approximation to the critical state of
these rocks, though small variations should be antici-
pated. It is of interest to investigate which rocks do
not appear to conform based on the evidence of Figs.
10, 15 and 16.

ot/

DIFFERENTIAL STRESS (s-a3),

CONFINING PRESSURE
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Fig. 16. Triaxial data for dry carbonate rocks compiled by Mogi [4]

(Fig. 3). All tests were performed at room temperature. Brittle, transit-

jonal and ductile behaviours are indicated by closed symbols, half-
open symbols and open symbols respectively.

Firstly, from Fig. 10 it appears that the stronger of
the 2 limestones has not reached its critical state at
6, = 303 In Fig. 15 the curves numbered 5, 10 and
11 (and possibly 7), show a continued rise in strength
beyond the proposed critical state. These rocks are re-
spectively; Mizuho trachyte, Bartlesville sandstone,
Barns sandstone and Tatsuyama tuff. Mogi[4] de-
scribes all 4 as porous, with a porosity in the range
of 1-10%,. In contrast the curves numbered 1, 2 and
3 representing highly porous (> 10%) weak tuffs and
andesite do seem to obey the critical state law. The
possible reason for this discrepancy is of great interest.

It will be noted from Fig. 15 that the 4 rocks men-
tioned above, which do not at first sight appear to have
reached the critical state (7, 11, 5, 10) are in a ductile
state at the highest pressure. If the pore air was unable
to drain under high confining pressures due to ineffi-
cient pore connection, it would be subjected to a pres-
sure equal to the confining pressure. In fact, the critical
state line for undrained tests is represented by o, =
2 5. This line is drawn in Fig. 15, and it appears that
curves 7, 11, 5, and 10 will satisfy this condition very
well. The fact that curves 1, 2 and 3 do satisfy the
drained critical state condition is perhaps due to the
much greater porosity and greater possibility of inter-
nal pore drainage during collapse of these weak porous
rocks.

In Fig. 16 there are at least 7 rocks which do not
appear to obey the proposed critical state. Curves 2,
3, 5 and 6 represent marbles, and curves 11, 12 and
13 limestones. It would appear that they might well
obey the ‘undrained’ critical state line (¢, = 2 03), but
whether the previous argument concerning pore air can
be invoked here, is a matter for conjecture.

The strongest rock represented in Fig. 15 (curve 24,
quartzite), is of such high strength that it seems unlikely
that its critical state will be reached until extremely
high confining pressures, which will probably be in
excess of existing experimental capacity. However,
some of the medium to high strength rocks such as
curve 20 (serpentinite) in Fig. 15, and curves 15 and
16 (dolomites) in Fig. 16, do appear to conform.

Prediction of critical effective confining pressure

If the linear relationship represented by equation (24)
can be used to extrapolate low pressure triaxial data,
then the critical state of these extremely strong rocks
can perhaps be estimated, thereby avoiding expensive
high pressure tests. It has been shown that the critical
state is represented by the following identities: (6,-03)
= 0,, 0, = 307, Thus equation (24) can be simplified
to give the following relationship:

a(critical) = Yo (M/3 + 1.0). (25)
It follows that the value of g, acting on the mobilized
failure planes at the critical state is equal to 2 o5 (criti-
cal).

The extreme gradients (M) of 3 and 30 obtained for
Solenhofen limestone and Westerly granite from Fig.
14, suggest values of gs(critical) of 250 MN/m? (2.5
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kbar) and 1320 MN/m? (13.2 kbar) respectively. As will
be seen from Figs. 10 and 17, the first value is exactly
as found. However, experimental data is not available
to test the predicted critical state for the granite. The
extremely strong quartzite (Fig. 15, curve 24) has,
according to the mean gradient of the 3 available exper-
imental points, a value of ¢ (critical) of about 3000
MN/m? (30 kbar). Diabase (Fig. 15, curve 23) should
have oj(critical) very similar to the Westerly granite
represented by curve 12. The dissimilar gradients
(M = 15 and 30, respectively) compensate for the higher
uniaxial strength of the diabase.

Corresponding behaviour of sands

Before leaving this review of experimental data, it
is of great interest to see the way sand behaves under
high confining pressures. Vesic & Barksdale [38] con-
ducted triaxial tests on a river sand up to confining
pressures of 63 MN/m? (630 kg/cm?). The strength
envelope for conventional low pressure tests (below 70
kN/m?, 0.7 kg/cm?) was inclined at about 44°, decreas-
ing to about 39° at pressures of about 500 kN/m? (5
kg/cm?). Vesi¢ and Barksdale found that under high
confining pressures the envelope is virtually linear, i.e.
from about 3 MN/m? (30 kg/cm?) up to the maximum
pressure of 63 MN/m? (630 kg/cm?). The overall in-
clination is almost exactly 30°. Of all the high pressure
test results, only two show stresses at failure of o, < 3.0
63. These two exceptions are in the range 3.0 o,
>0, >29 o;. Vesic & Clough[39] show similar
results, with only one value (6, = 297 ;) less than
the proposed critical state for rock.

In view of the crushing of sand grains and reduction
in pore volume that occurs, it seems very reasonable
to compare behaviour of sands at very high confining
pressures with that of weakly cemented porous rocks.
High pressure penetrometer tests in sand can appar-
ently result in ‘petrification’, the instrument head being

), mup?
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Fig. 17. Mohr envelope for Solenhofen limestone based on data from

Fig. 10. The four open circles are the measured shear strength data

for faults in the brittle range of behaviour, as plotted by Byerlee
[6] (see Fig. 11).

coated with a material resembling a weak rock after
extraction from the sand (Holden, 1975, personal com-
munication).

EMPIRICAL LAW OF SHEAR STRENGTH
FOR INTACT ROCK

The triaxial strength data for the 6 rock types shown
in Fig. 10 show wide variation of behaviour, from the
ductile Solenhofen limestone through to the very strong
Westerly granite. Mohr envelopes were constructed for
both these rocks, and also for the intermediate strength
dunite. An example is shown in Fig. 17. Each point
of tangency (Nos. 1, 3, 6, 10, 12 and 15) represents
the stresses at failure. These values of 7/o, were ana-
lysed for the three rocks, in an attempt to derive a
shear strength law for intact rock incorporating the
critical state expression (¢,-03)/6, which was found to
be so relevant for rock joints and faults. An expression
of the following type was tested:

t/0, = tan(m logm(al a_ a;) + d)c). (26)

The angle ¢, defined the slope of the critical state line,
and was equal to 26.6° (arctan 3}).

It was found that (m) was close to 50 for all 3 rocks
over the whole range of stresses from the uniaxial com-
pression stress circle (No. 1 in Fig. 17; No. 2 in Fig.
13), right up to the critical circle, or up to the maximum
stress tested in the case of the granite and dunite.

Reversing the procedure and assuming a constant
value (m)= 50, the following mean angles were
obtained: Westerly granite 25.8°, Spruce Pine dunite
25.4°, Solenhofen limestone 26.7°. For all practical pur-
poses it appears reasonable to assume that the follow-
ing expression describes the shear strength of intact

rock:
— "3> - ¢C> @7)
o"l

where ¢, is equal to 26.6°.

The fact that equation (27) fits correctly inclined
curved envelopes to all the stress circles from uniaxial
compression up to, in the case of Solenhofen limestone,
the critical stress circle is remarkable, especially when
the widely different gradients of granite and limestone
are considered (equation (24), Fig. 14). It suggests that
the rock ‘knows’ that it is governed by a critical state
where the shear strength will reach a maximum value
equal to the critical effective confining pressure—even
though this value varies widely between rocks as differ-
ent as limestone and granite.

Equation (27) is valid down to a stress level equival-
ent to point Tin Fig. 13. It will probably also be valid
for negative values of a3, provided that o, remains on
the positive side of the axis. The low and negative stress
portion of the strength envelope between the uniaxial
tension and compression circles determines the cohe-
sion intercept (c). From the geometrical relations of
Mohr theory it can be shown that the theoretical cohe-
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sion intercept obtained by assuming a linear envelope
in this region is:
c=14(0. x )t (28)

Isotropic rock properties are assumed. Most rocks
have ¢ /o, in the range 5-20. If for convenience values
of 9 and 16 are assumed, then values of (c) equal to
1/6 0. and 1/8 o, are obtained. These values are clearly
conservative estimates, when the curvature of the real
envelopes are considered.

The gradient of the theoretical linear envelope
between the uniaxial tension and compression circles
is given by the following relationship:

o /o, = tan? (45° + ¢/2) (29)

where ¢ is the theoretical angle of friction in this stress
region.

PREDICTION OF TRANSITION BEHAVIOUR

In the light of our knowledge of the peak shear
strength of faults through rock up to the transition
pressure:

t/o, = tan<20 logm<al ; U3> + ¢,,>, (30)

n

it is now possible to obtain an expression for the appar-
ent stress drop resulting from fracture below the tran-
sition pressure. The limiting case occurs at the transi-
tion pressure itself. At this point the friction and frac-
ture curves intersect, and the shear stress required to
cause fracture of the intact rock is the same as that
required to cause sliding on the resulting fault. Thus:

0y — O ==
loglo( ! o, 3) = (—¢b 30 ¢t>
By implication the peak dilation angle occurring

across a fault at the brittle—ductile transition is as fol-
lows:

(€2)]

dy = 1/3(d5=¢.)-

This is a very significant expression because it sug-
gests that rocks such as shales with ¢, < ¢, will not
be dilating at the transition. This may well mean that
shales—which are sometimes excluded from the results
of high pressure triaxial data because of their unusual
behaviour—have reached their critical state before (or
simultaneously with) the brittle-ductile transition.
Shear tests performed on shale by Maurer [40] suggest
values of ¢, as low as 22° (u = 0.4).

If a realistic range of ¢, values of 30°-36° is assumed
for the 6 rock types represented in Fig. 10, then equa-
tion (31) suggests that at the transition the range of
values of (6,-03)/g, will be 1.30-2.06. Analysis of the

(32)

*It should be emphasised that the value of f is strictly relevant
to the two-di ional case as repr d by the Mohr construction,
namely when ¢, = o;. The conjugate surfaces developed under these
so-called ‘triaxial’ conditions are actually slightly curved, while the
conjugate failure surfaces developed under three-dimensional stress
states with ¢, > 0, > o, are planar and intersect along lines parallel
to o,.

experimental data for the ‘last’ brittle point and the
‘first’ ductile point shows that the range of values
actually lies between 1.37 and 2.01. In the case of the
2 limestones which are known to have high ¢, values
(see Table 1), the values of (¢,~03)/0, across the transi-
tion range from 1.82 to 2.01, suggesting ¢, values in
the range 34°-36°. This is very realistic.

The brittle-ductile transition is such a significant
state for rocks that it is of value to develop relation-
ships from which further information can be obtained.
For example, it would be very useful for the field inter-
pretation of joint and fault orientations if the conjugate
shear angle (2) between conjugate failure planes could
be determined. Likewise, an expression for the stress
level required to reach the transition pressure for a
given rock would be of considerable value since this
pressure when corrected for temperature and time (see
Price, [41]) may well represent the conditions in the
crust when the particular rock last became a brittle
solid, or, in the case of sedimentary rocks, when the
particular rock was under the maximum load of sedi-
ments.

It can be shown from equations (18) and (32) that
the total friction angle 6, exhibited at the brittle-ductile
transition is a function only of the basic friction angle
¢, assuming that the critical state line represented by
¢, = 26.6° has the same gradient for all rocks. Thus;

0, = 1/3(5 ¢s-2 ¢o). (33)

A quick experimental check of this equation indicates
that for the majority of rocks—particularly silicate
rocks—the value of 6, should be 32.3°, since ¢, is most
commonly 30°. This almost exactly coincides with the
value frequently quoted in the literature (i.e. u = 0.65,
Mogi [4] p. 225). It also explains how a carbonate rock
such as limestone with ¢, between 35° and 40° may
have 6, as high as 41°49° (ie. p ~ 1.0, Mogi[4] p.
225). Apparently shale might have a value of 6, as low
as 19°, assuming that ¢, = 22° is correct for this rock.

It can be shown from equations (9) and (27) that
the angle (2B)* between the conjugate failure surfaces
is given by the following expression:

sin 2B = 2(t/a,) exp|:~ Slm(tan“' (t/o,) — 47:)] (34)

where n = 0.43 is the ratio between log, and log .
The gradient of the Mohr envelope (¢) is also found
from the above expression by equating cos ¢ = sin 2*.
This is apparent from equation (11). The above
expression can be simplified for the case of the brittle—
ductile transition by substituting equation (33). Thus:

sin2B = 2 tan 9,-exp[—(-‘]’—3%jﬁ>} (35)

The common value ¢, = 30° suggests a value of
2B = 76°; but it is clear that the angle between the
failure planes is very sensitive to the value of ¢,, par-
ticularly when this approaches 26.6°, in which case
28 = 90°.
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In order to find an expression for the ratio o,/o;
at the brittle—ductile transition, it is necessary to obtain
a relationship between the angle 6, subtended by the
point of tangency, and the angle «, subtended by the
top point E of the transition circle (angle EOF, Fig.
13). It can be shown from the geometry of the transition
stress circle that:

tan o, - sin 28
1 — tan o, cos 28

tan 6, =

whence

tan 6,

DI ... S 36
R 28 + cos 2f3-tan 6, @0)

If 2 is evaluated from equations (35) and (33), and
the value obtained substituted in equation (36) then

it is possible to estimate the value of ¢,/ at the transi-
tion from the following simple relationship:

1+ tana,

0,/0 (transition) = i —
- t

(37
We are now close to obtaining the desired expression
for the mobilized transition pressure (o, transition)
represented by point P in Fig. 13. Since this pressure
is clearly dependent on the strength of the rock con-
cerned, and not just on the appropriate value of ¢,,
it is necessary once again to make use of equation (24).
This can be rearranged to give:
o, — 03
g,

=% (Ma3/o, + 1.0).
On

n
Hence, at the transition, with equation (31) we have:
o,(transition) =

oM as/o, + 1.0) x exp [—(4’;’3_0;’ )] (38)

The above equations will now be evaluated so that the
predicted transition pressures can be compared with
the experimentally measured values. It is necessary to
know 3 things about a rock before the transition pres-
sure can be estimated. A value of ¢, is required to
estimate the total friction angle 6, at the transition,
Values for the unconfined compression strength ¢, and
the gradient M, Fig. 14, equation (24), are also required.

Example
(1) Solenhofen limestone ¢, = 35° M
(2) Oak Hall limestone ¢, = 35° M
(3) Westerly granite ¢, =30°M

The values of g,(transition) obtained above are very
close to the values reported in the literature. For
example, Byerlee ([5] p. 3636) reports that the fracture
and friction envelopes for Westerly granite intersect (at
the transition) when the normal stress is about 1750
MN/m? (17.5 kbar).

Before leaving the brittle-ductile transition, it is of
interest to return to Fig. 17, showing the Mohr envel-
ope for Solenhofen limestone. The curved envelope
which passes close to the 4 experimental points, is the
predicted frictional strength obtained from equation
(30) with an assumed ¢, value of 35°. The theoretical
transition where the 2 curves intersect occurs between
the sixth and the tenth stress circles.

The ‘last’ brittle failure and the ‘first” ductile failure
were actually recorded by Byerlee between the seventh
and eighth stress circles, almost as predicted.

It should be noted that the predicted envelope for
the faults has been extended as a dotted line beyond
the transition. Whether the intact rock and faults are
governed by equation (27) (fracture strength) at stresses
higher than the transition, or by equation (30) (fric-
tional strength), is a matter for conjecture. Mogi [42]
has suggested that there may indeed be two distinct
types of behaviour for rocks which he termed A-type
and B-type according to whether they followed the frac-
ture envelope or the frictional envelope above the tran-
sition. In many ways it is easier to imagine that the
individuality of a rock as expressed by ¢, is lost ‘in
the melting pot” when it becomes ductile, so that all
follow the same law, equation (27). This will be an in-
teresting topic for further investigation. :

Analogy to the behaviour of clay

The fracture envelopes and the friction envelopes of
rock are in some ways analogous to the peak strength
envelopes of over-consolidated (O.C.) and normally-
consolidated (N.C.) clays. Clay that has been histori-
cally consolidated under a greater effective pressure
than existing at present is over-consolidated, just as all
rocks are over-consolidated, most of them enormously
so. However, as O.C. clays and rocks are re-stressed,
they reach a point when they are again in a normally
consolidated state relative to the historic maximum
effective pressure. The existing mineral structure and

=3  ¢.= 250 MN/m?%2.5 kbar),
=7 .= 260 MN/m? (2.6 kbar),
=30 g, =240 MN/m? (2.4 kbar).

Evaluating equations (33), (35), (36), (37) and (38), the following values are obtained:

0, 2p tano,  0y/0;
(1) 40.6° 64° 0.67 5.1
(2) 40.6° 64° 067 5.1
(3) 32.3° 76° 0.56 3.6

o, (transition)
210 MN/m? (2.1 kbar),
320 MN/m? (3.2 kbar),
1730 MN/m? (17.3 kbar).
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cement bonding are in effect the rock’s memory of past
conditions.

In the case of clay this normally consolidated condi-
tion is reached when the O.C. and N.C. envelopes
merge, both to follow (in the case of drained tests) the
N.C. envelope up the appropriate critical state line.
For rocks this stage is represented by the brittle-ductile
transition when both the fracture and friction envelopes
are coincident. The friction envelope represents a
material whose cohesive bonds have been broken
(locally) by fracture. It seems possible, and it is certainly
an attractive hypothesis, that at high temperatures the
fracture and friction envelopes merge on the critical
state line. If all rocks lost their individual values of
¢, at high temperature such that ¢, = ¢, then this
point of merger would also represent the brittle—ductile
transition. This point needs further investigation.

In the case of igneous and metamorphic rocks, the
brittle-ductile transition may possibly give a measure
of the effective stress operating when the rock crystal-
lized into a solid brittle material on the last occasion.
The mobilized normal pressure (o, transit. pressure P,
Fig. 13) will not of course be the exact pre-consolida-
tion pressure, because it has to be corrected for time
and temperature effects. Rock is brittle over a smaller
range of stress when the rate of strain is very slow
and when at elevated temperatures, as shown by Price
[41]. The value of o,(transition) therefore represents an
equivalent pre-consolidation pressure, relevant to rela-
tively high rates of strain and to room temperature,
and is therefore an overestimate of the historic pressure.
In the case of sedimentary rocks this pressure may also
represent an equivalent pre-consolidation pressure,
relevant to the maximum superincumbent load to
which the rocks have been subjected. A smaller tem-
perature correction might perhaps be in order in this
case.

PART 1I

FULL SCALE BEHAVIOUR IN THE
EARTH'S CRUST

The enormous step involved when extrapolating
laboratory scale tests on faults of a few cm? in area
to crustal faults perhaps 10 orders of magnitude larger,
implies that there may be some justification for using
empirical laws such as those developed in Part 1. How-
ever, it is obviously important that these empirical laws
are sensitive to those factors known to influence labora-
tory results. For example, in the case of joints or faults;
the rock strength, joint weathering, surface roughness,
presence of water (and water pressure), and the effects
of time are all known to influence the shear strength.
It is of extreme importance to investigate their effects
on a larger scale.

*See footnote on p. 269.

Numerous compression tests have indicated that the
laboratory size sample of a few centimetres size may
give an overestimate of strength by a factor of up to
5 or 10, when compared to the results of in-situ tests
on rock blocks of a metre or more in size. As noted
by Brace [43], this scale effect appears to die out for
large sample sizes. However, these recent investigations
of scale effects in the field of rock mechanics [44-46]
are inevitably limited to moderate stress levels because
of the extreme size of the in-situ specimens. It is perhaps
possible that at several kilometers depth there is less
scale effect than indicated by these tests, due to reduced
pore and flaw volumes.

Inevitably, a discussion of full scale behaviour in the
Earth’s crust must be on a hypothetical plane since few
hypotheses can be checked with certainty. However,
since an understanding of full scale behaviour is (or
should be) the object of laboratory scale tests and
theories, it is obligatory to attempt to extrapolate the
preceding theoretical models at least to some depth
into the crust.

The conjugate shear angle

It is convenient to start looking at those full-scale
features that are presently exposed at the surface,
namely joints and faults. These features provide us with
a record of previous conditions at depth. Hopefully,
they also provide a picture of present conditions at
depth in some parts of the Earth’s crust.

Conjugate sets of faults and shear joints intersect
along lines parallel to the former intermediate effective
principal stress (o,), and their acute angle of intersec-
tion represented by (2f)* is bisected by the former
major effective principal stress (¢,). The angle (2) re-
flects the strength of the rock when these failure sur-
faces developed since it is related to the inclination ¢
of the envelope of fracture strength by the simple
expression: 28 = 90 — ¢.

Experimental observations by Brace[47] suggest
that the conjugate shear angle (2f8) varies gradually
from about 0° to 60° as the applied stress changes from
tensile to compressive. These observations are indir-
ectly confirmed by field studies of joint patterns, in
which quite small conjugate shear angles have been
observed, for example 10-30° (see Secor [48, p. 635];
Badgley [49, p. 19]). In the case of normal and thrust
faults Price [50, p. 59] gives values of 2 in the range
50-60°, and 40-50°, respectively, while Anderson [51]
recorded values of about 36-50° for normal faults and
50° for wrench faults.

The range of values for 2 suggested by the theoreti-
cal linear envelope, equation (29), between the uniaxial
tension and compression circles depends on the ratio
g /o, If for convenience, values of ¢ /s, equal to 9 and
16 are assumed, then the hypothetical range of ¢ will
be from 53° to 62° respectively. Since 28 =90 — ¢,
these values suggest a range of 37-28° for the conjugate
shear angles. The range of 36-60° for normal faults
suggest that either the ratio ¢./o, for rocks can some-
times be less than 9, or that the real curvature of the

s T



N. Barton

envelope in this region should not be ignored. A curved
envelope between the same two stress circles (o./a, = 9)
would result in values of 2f somewhat greater than
37° with small negative values of ;.

The reducing gradient of the strength envelope as o3
becomes positive and increases, leads to steadily in-
creasing values of 2f as shown in Fig. 17. A condition
of extreme importance to the development of joints in
rock is the brittle-ductile transition.It is likely that
many joint patterns, particularly those in igneous and
metamorphic rocks, will reflect the stress-strength con-
dition when the rock last became brittle (i.e. just on
the brittle side of the transition). In the case of meta-
morphic rocks the interpretation may of course be
complicated by anisotropic strength properties which
will clearly affect the value of 2f under given stress
conditions.

In the case of isotropic rocks, equations (35) and (33)
can be used for estimating the conjugate shear angles
at the transition. When ¢, = 30° as commonly found,
2p should be 76°. However, if ¢, is as high as 40°
or lower than ¢, (26.6°), the conjugate shear angles may
range all the way from 55° to more than 90°.

Markedly planar, orthogonal joint sets are frequently
to be found in rocks which have been subjected to tec-
tonic loading. If the empirical model for the brittle-
ductile transition can be extended to full scale pro-
cesses, to extremely slow rates of strain, and to high
temperatures (by changing the stress scale), then it is
possible to draw some interesting conclusions concern-
ing the physical state of the rocks during the formation
of those orthogonal joints that result from shear failure.

If such joints formed at stress levels just on the brittle
side of the brittle—ductile transition of the respective
rocks, then values of ¢, would apparently need to be
about equal to ¢, ie. 26.6°. Since only a relatively
small number of rocks have values of ¢, of approxi-
mately this magnitude, it suggests that many conjugate
shear joints might be formed, or at least their planar
traces predetermined, at stress levels higher than the
brittle-ductile transition. Possibly their position is pre-
determined by slip planes developed when the rock was
in a completely ductile state as represented by the criti-
cal state. (All rocks should theoretically develop ortho-
gonal conjugate shears at their critical state, whatever
values of ¢, are involved).

Field evidence for such a theory is strong in view
of the widespread occurrence of approximately ortho-
gonal tectonic joints. In addition, their extreme planar-
ity, often over may tens of metres, is very dissimilar
to the surface appearance of, for example sheeting
joints, which presumably formed in tension when the
rock was in a completely brittle condition. In fact, it
seems possible that some of these planar orthogonal
conjugate shears also developed when the rock was in
a brittle state, since on a small scale they may exhibit
a rough surface texture, as if brittle failure was involved
but in this case strictly controlled by the predetermined
planar traces developed at an earlier point in their his-
tory.

Seismic instability and stress drop magnitudes

The joint and fault development just discussed may
result in measureable seismic events, if the stress drops
accompanying fracture are large enough and occur
rapidly enough. A sudden major instability may cause
elastic energy to be radiated such great distances that
an earthquake is registered.

It appears that most earthquakes occur in the upper
crust. Furthermore, over 75% of the average annual
seismic energy is released by earthquakes with focal
depths less than about 60 kilometers [52]. In some
regions, such as California, no earthquakes with foci
below the Earth’s shallow crust (2040 km under con-
tinents) have been recorded. Deep earthquakes are
believed to occur in material that is not typical of their
depth, for example slabs of crustal materials sinking
under deep trenches.

If these deep earthquakes are removed from the data,
it is found that seismic activity in general is confined
to the uppermost 50 km of the earth. This implies
lithostatic stress levels of up to 1000-1500 MN/m?
(10-15 kbar). Significantly, the depth of a fault zone
does not as a rule increase with increasing magnitude
of earthquake. Rather it reaches a maximum value the
thickness of the seismic crust. In California this is
usually no more than 20 km, which implies a lithosta-
tic stress level of only about 500 MN/m? (5 kbar).

Two sources of instability are usually referred to
(Nur [52]: Brace [43]). Firstly there is the brittle failure
of intact rock in compression, and secondly stick—slip
along the pre-existing faults. Stick—slip is an oscillating
mechanism in which stress rises during the period of
fault stick, to be followed by slip, a new build up of
stress, the process repeating itself many times. In labor-
atory tests on many different rock types, stress drops
of several hundred MN/m? (several kbars) can occur
at each slip event if the confining pressure is quite
high—i.e. several hundred MN/m?. This magnitude of
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Fig. 18. Fracture strength, frictional strength and predicted frictional

strength for Westerly granite based on experimental data reported

by Byerlee ([5], Figs. 7 and 8). The predicted strength is based on
equation (30), with an assumed value of ¢, = 30°.
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stress drop appears to be far greater than that esti-
mated during major earthquakes, typically about 3-6
MN/m? (30-60 kg/cm?) for magnitude 6.8-8.3 events
[52]. The influences of the stiffness, damping and iner-
tia of the moving fault blocks have been suggested as
possible limiting factors in-situ [5]. In addition, it
should not be forgotten that the fault intersects the
boundary of a laboratory specimen, whereas in the
Earth only a finite—though probably very large—part
of the fault moves during an earthquake.

Figure 18 illustrates the difference between fracture
strength and frictional strength and the associated
stress drop suggested by laboratory tests on Westerly
granite [5]. In the same figure the frictional strength
predicted using equation (30) is shown. This is based,
as before, on the measured values of (0,-03) and (d3)
at fracture (Byerlee [5], Fig. 8), and an assumed fault
angle of 30°.*

It can be seen from Fig. 18 that the apparent stress
drop available due to brittle fracture of the intact rock
is actually maximum at an effective normal stress of
about one third that needed to reach the brittle-ductile
transition. The maximum value indicated by these
small scale laboratory tests is of the order of 150
MN/m? (1.5 kbar).

In fact, the ‘instantaneous’ stress drop may be even
larger since the peak strength of the fault is not mobi-
lized at fracture, but after a finite displacement. The
trough in the shear stress—displacement curve rep-
resents a larger stress drop than the net loss of strength
between fracture peak and the friction peak. As far as
earthquake sources are concerned, the maximum stress
drop will be the critical one as this stress is released
very rapidly. The stress drop due to fracture of intact
rock is in fact larger than the value suggested by sub-
tracting the expression for (7) in equation (30)- from
that of equation (27).

At both lower and higher stress levels, the apparent
stress drop reduces, becoming zero at the transition
pressure and equal to the cohesion of the intact rock
at zero confining pressure. As pointed out by Byer-
lee [5], if the Coulomb theory of fracture were valid
for rock at high stress, the stress drop between the frac-
ture envelope and the friction envelope should be a
constant representing the cohesive strength of the rock.
Clearly, this theory is not valid here.

The above sources of instability produce on a labora-
tory scale single stress drops one to two orders of mag-
nitude larger than those apparently occurring in the
largest earthquakes. The excessively large stress-drops
encountered in laboratory scale stick-slip events can

*The frictional data points obtained by Byerlee were actually for
artificial tension fractures generated in blocks of Westerly granite,
obtained by coring triaxial cylinders with the fracture at about 30°
to the axis. It has been assumed that (JRC) = 20 is also valid for
these surfaces. According to Byerlee [5], the very high stresses applied
in these tests reduce the experimental accuracy of the normal and
shear stresses to + 3.5% at confining pressures up to 500 MN/m?
(5 kbar), and + 9.5% at confining pressures up to 1000 MN/m? (10
kbar). This might explain the considerable scatter of experimental
results at high stress.

perhaps be explained by invoking arguments concern-
ing in situ damping and intertial effects. However, the
stress drop resulting from brittle fracture is apparently
too large as an earthquake source mechanism, unless:

(i) it occurs at very high stresses approaching the
transition pressure;

(ii) it is smaller than indicated by laboratory tests,
due to a scale effect;

(iii) it is smaller than indicated by laboratory tests,
due to the finite area of fault involved in any seismic
event.

The first argument appears feasible in one respect:
in that the volumetric dilation would probably be less
marked at these high stresses, thereby resulting in less
‘dilation hardening’. This is a phenomenon caused by
rapid pore pressure decreases accompanying the volu-
metric dilation of saturated rock [43]. However, if crus-
tal rocks are in any way typified by Westerly granite,
the effective normal stress might need to be as high
as 1500 MN/m? (15 kbar) to limit the stress-drop suffi-
ciently. This would imply an effective confining pres-
sure of the order of 900 MN/m? (9 kbar); just below
that required to reach the brittle—ductile transition in
the laboratory samples of Westerly granite (Fig. 18).
When interpreted as a lithostatic load, this implies a
depth in the crust of the order of 40 km.

A table listing the depths of earthquakes known to
have occurred on active (therefore pre-existing) faults
given by Nur [52], shows 12 earthquakes having focal
depths of between 1.4 and 10 km, and 21 earthquakes
having focal depths of from 10 to 20 km. If it is possible
that earthquakes caused by brittle fracture can also
occur at these shallow depths, then the brittle-ductile
transition pressure of rocks in situ must apparently be
markedly less than that demonstrated by, for example,
Westerly granite. This would be the case if a scale effect
existed, sufficient to reduce the shear strength of rock
even at high stress levels.

Experimental and theoretical scale effect

As discussed earlier, the scale effect that has been
demonstrated in rock mechanics is limited to moderate
stress levels, due to the large size of the in situ speci-
mens. However, accepting this experimental limitation
it is of interest to see how equation (7) and the families
of shear strength envelopes presented in Fig. 5 fit into
the experimental findings.

Figure 5 demonstrates that a scale effect on compres-
sive strength—which would also affect the joint wall
compressive strength (JCSy—would have a marked
effect on the shear strength predicted for rough-undu-
lating joints (JRC = 20), but a minimal effect on
smooth, nearly planar joints (JRC = 5). There should
thus be minimal or zero scale effect on residual
strength, and maximum scale effect on the peak
strength of the roughest fracture surfaces which are
probably analogous to faults in their immediate post-
fracture state.

A comprehensive series of scale effect tests in quartz
diorite have recently been reported in the rock
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Fig. 19. Results of in situ shear tests on joints in quartz diorite,

after Pratt et al. [44]. Envelope (1) represents specimens with an

average area of approx 200 cm?, (2) an average area of 1500 cm?

and (3) an average of 5000 cm?.

mechanics literature. Unconfined compression strength
tests reported by Pratt et al. [53] included sample
lengths from about 5 cm to 275 m. Direct shear tests
performed on natural joints in the same rock type de-
scribed by Pratt et al. [44] included joint areas ranging
from 60 cm? up to 5000 cm?.

The first study showed that the unconfined compres-
sion strength dropped from about 60 or 70 MN/m? (600
or 700 kg/cm?) for 5 cm long specimens down to about
7 MN/m? (70 kg/cm?) for 90 cm long specimens.
Further increases in specimen length to 275 cm did
not appear to indicate any scale effect beyond a length
of about 100 cm.

The second study concerning shear strength of joints
in the same rock, showed roughly 409 drop in peak
shear strength over the range of surfaces tested. If these
surface areas are converted to representative lengths
by taking the square root of the areas, the size range
is seen to be approx 8 cm to 70 cm. The shear strength
in fact showed a less marked scale effect than uncon-
fined compression strength, but significantly the shear
strength scale effect did not apparently die out within
the size range of specimens tested.

Figures 19 and 20 show a comparison of experimental
shear strength envelopes (curves 1, 2 and 3) reported
in the above study [44], and their theoretical counter-
parts based on equation (7). Values of (JRC) equal to
20 were assumed in each case. This might well be an
over-estimate of roughness. (It was not described by
the authors). The values of (JCS) of 54, 23 and 13

Am‘

A

Rl

MN/m?
-

P
;’ //41 o
7

EFFECTIVE NORMAL STRESS, MN/m?

Fig. 20. Theoretical peak shear strength envelopes obtained from
equation (7) (Fig. 5) with values of (JCS) as shown, and assumed
values of ¢, = 30°, and (JRC) = 20.

MN/m? (540, 230 and 130 kg/cm?) were obtained by
back-calculating using equation (7), with an assumed
value of ¢, = 30°, and a single value of 7/o, taken from
the middle of each of the 3 experimental curves. The
theoretical envelopes extrapolated from these single ex-
perimental results show fairly similar trends to those
measured. The upper envelope is a little too steep, the
middle envelope almost identical, and the lower envel-
ope a little too flat and curved.

The representative lengths (square root of area) for
the shear tests recorded in Fig. 19 were approx 14,
39 and 71 cm, respectively. The unconfined compression
strength measured on 5 cm long specimens corresponds
approximately to the JCS value back calculated for
the 14 cm shear tests. The unconfined compression
strength measured on 30-45 cm long specimens corre-
sponds approximately to the JCS value back calculated
for the 71 cm shear tests. If this approximate 1:2 or
1 :3 length ratio holds for larger specimens, it suggests
that the shear strength scale effect might in theory die
out when the representative lengths are 2 to 3 times
that of the largest compression specimens just sensitive
to the scale effect—which was apparently about 100
cm according to Pratt et al.[53]. This would imply
that the shear strength scale effect might die out for joint
lengths in excess of 2 to 3 m.

One significant piece of data can be used to support
this tentative hypothesis. The direct shear tests per-
formed on rough-undulating tension fractures generated
in various weak, brittle model materials reported by
Barton [17, 54] represented full scale test lengths rang-
ing from about 2-30 m when a full scale unconfined
compression strength of 50 MN/m? (500 kg/cm?) was
assumed for each scale of test. No shear strength scale
effect was evident over this range of simulated speci-
men sizes with the assumed constant o, value [17, Fig.
4. Perhaps all the shear strength scale effect is concen-
trated within the first 2 m of joint lengths. In the case
of smoother and more planar joints, the scale effect
might possibly die out within smaller dimensions than
this.

The unconfined compression strength scale effect that
apparently dies out for sample lengths in excess of 1
m was also observed by Bieniawski and Van Heerden
[46] for coal. However, the maximum 10-fold reduction
in strength has not been approached by the stronger
rock types. As noted earlier, it is a matter for specula-
tion whether these scale effects apply to extremely high
stress environments, in which porosities and micro-
scopic and macroscopic flaws will possibly be much
reduced in magnitude.

Possible significance of scale effect to earthquakes

The discussion presented earlier indicated an appar-
ent lack of fit between stress drop magnitudes observed
in the laboratory and those back-calculated from
major earthquakes. Those observed in laboratory size
samples were apparently much larger than those back-
calculated from major seismic events. According to the
review article by Nur [52], stress drops of from 1 to
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10 MN/m? (10-100 bars) may be realistic for major
earthquakes. The upper limit corresponds to the 100
year periodicity theory for the San Andreas fault, in
which shear stress is assumed to build up at a rate
of about 0. MN/m? (1 bar) per year, releasing a very
large earthquake approximately once in every 100
years.

If we tentatively apply the above findings on scale
effect to seismic events, some interesting results are
obtained. Hypothetical 7, g, envelopes can be generated
using equation (14) for fracture strength, and using
equation (8) for frictional strength. For convenience,
the earlier assumptions of a 30° fault angle, ¢, = 30°,
and JRC = 20 were used. Firstly, a ‘laboratory’ test
was simulated with a rock having an assumed uncon-
fined compression strength (o) of 250 MN/m? (2.5
kbar), and a (k) value, equation (14), of 5.0. The corre-
sponding fracture and friction envelopes intersect at an
effective normal stress of 2100 MN/m? (21 kbar). This
hypothetical brittle-ductile transition occurs at a con-
fining pressure (g3) of about 1250 MN/m? (12.5 kbar),
equivalent to a lithostatic overburden of about 50 km.
As seen from Fig. 21, the apparent maximum stress
drop available is about 120 MN/m? (1.2 kbar). It is
only when the stress level is extremely high that the
stress drop becomes less than 10 MN/m? (100 bars).
The depth would need to be of the order of 45-50
km.

If, due to a minor scale effect, the in situ unconfined
compression strength is only half of the laboratory
value (i.e. 125 MN/m? or 1.25 kbar), and assuming the
same coefficient (k) is applicable, it is found that the
hypothetical brittle-ductile transition occurs at an
éffective normal stress level of half the previous value.
The shear stress required is also half, and the maximum
available stress drop is only 60 MN/m? (0.6 kbar). A
stress drop of less than 10 MN/m? (100 bars) would
occur at a hypothetical depth of only 22-25 km.

If this example is extended and we now assume a
10-fold drop in compressive strength due to a scale

effect, then the above estimates of the brittle-ductile
transition pressure are reduced to about 125 MN/m?
(1.25 kbar), equivalent to a lithostatic overburden of
about 5 km. The apparent maximum stress drop avail-
able is in this case only about 12 MN/m? (120 bars),
similar to that occurring during a very large earth-
quake.

It may therefore be reasonable to tentatively con-
clude that if no scale effect exists at depth, earthquakes
of the brittle-failure-of-intact-rock variety will be
limited to depths close to those required for the onset
of ductility. On the other hand, if a significant scale
effect does exist—even at depth—then earthquakes
caused by brittle failure may well occur at quite shallow
depths, even in the stronger rocks.

It is interesting to note that with the hypothetical
models used above, the three brittle-ductile transitions
have a constant value of arctan (t/s,) of 33.7° (=6,).
This is 1.4° higher than predicted by equation (33). The
reason for the small discrepancy is due to the assump-
tion of a constant 30° fault angle for this hypothetical
example, when in reality the angle changes with the
inclination of the shear strength envelope.

Strength corrosion due to water

This discussion on the effects of scale on shear
strength would be incomplete without consideration of
the dual role of water, namely the possible strength
corrosion, and thé more obvious effective stress effects
caused by dilation.

A review of the effect of water on the shear strength
of rock joints and its related effect on the tensile and
compressive strength of rocks [18, pp. 322-326] indi-
cated that at low-to-medium stress levels the shear
strength of most smooth polished rock surfaces is unaf-
fected or increases in strength slightly when wet. Con-
versely, natural or rough joint surfaces appear to
reduce in strength when wet. Reductions can amount
to 5-30% according to the limited data available.

MN/mZ
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Fig. 21. Results of a hypothetical investigation of the possible effect of scale on the apparent stress drop and brittle-ductile
transition pressure.
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Exceptions can generally be explained by the miner-
alogy. For example, a smooth polished minor fault in
a quartz-rich rock (massive crystal structure), would
normally be unaffected or would increase slightly in
shear strength when wet. However, the presence of a
polished chlorite coating on such a surface would
dominate the behaviour since layer-lattice crystal struc-
tures suffer a big reduction in shear strength when wet
[55].

Detailed observations of sheared fractures in granitic
gneiss reported by Jaeger [13] suggest that slickensides
develop across powdered shear debris most readily
when the surfaces are saturated, with consequent reduc-
tion in shear strength and a greater curvature of the
strength envelope. Such changes of behaviour are not
available to joints that are already slickensided.

Even when surfaces are subjected to shear stress, it
is likely that on the asperity scale, local tensile failures
occur. Significantly, this will be more marked for
natural rough surfaces than for artificial, polished sur-
faces. Similarly, any crushing of shear debris (which
may involve tensile failure) will occur to a much greater
extent between the walls of rough joints or faults than
in smooth planar joints.

Equation (7) can in fact be expressed directly in terms
of the tensile strength of the rock (g,). If we assume,
as commonly found, that ¢, = 10 o, (approx), then
equation (7) can be rewritten:

t=og, tan[JRC logm<:—') + by + JRC} (39)
For the case of a rough, undulating joint, with JRC = 20
and ¢, = 30°, this becomes

t1=ga, tan[20 1ogw<$) + 50°}.

If we accept that the weakening effect of water is
indeed due to its adverse affect on the tensile strength
of brittle materials [5], then from purely theoretical
reasoning it can be seen that the peak shear strength
of rough joints (high JRC) will be more affected by
water saturation than smooth joints (low JRC). If the
adverse effect of moisture on tensile strength still operates
under high confining pressures, the presence or absence
of water can be expected to have a marked effect on
the initial post-fracture behaviour of a fault. Even when
(JRC) is reduced by subsequent shearing, the presence
or absence of moisture is likely to continue to affect
the shear strength, due to the easier formation of slick-
ensides in the powdered shear debris, as noted above.
At a much later stage in the life of the fault when fine
gouge has developed, the presence of water will have
the more obvious softening effects.

According to the test results reported in the literature
[18, Table VI]; [56, Figs. 3 and 4] the tensile, uncon-
fined compression, and confined compression strength
of rocks are each strongly affected by the moisture con-
tent. For unconfined tests the reduction in. strength
from ‘completely dry’ to 100% saturation may be as

(40)

much as 50%,. However, between the engineering limits
‘air dry’ to ‘saturated in situ’, reductions of about
20-30% seem more common.

If these effects are also present at high confining pres-
sures, then the combined effect of moisture on fracture
strength and frictional strength might be expected to
reduce the effective confining pressure required to reach
the brittle-ductile transition. The end result might be
analogous to, though less severe than, the scale effect
discussed earlier.

If water is present in any quantity at great depth,
the resultant reduction in the effective confining pres-
sure will tend to increase the depth required to reach
the brittle-ductile transition, thus acting in the opposite
direction to the above strength corrosion effect. The real
depth of the transition to ductile behaviour will pre-
sumably depend on the balance between the inter-
related effects of scale, strength corrosion, effective
stress, and of course temperature. The influence of the
time scale must also be considered, as emphasised by
Price [41].

Fault dilation and water pressure effects

Recent interest in the variations of the ratio of travel
times for shear waves and compressional waves prior
to seismic events [52], has again focussed attention on
the volumetric dilation and water content changes
believed to occur in the focal zone prior to fault devel-
opment. This fluid migration hypothesis was suggested
by Mead [57].

Brace and Martin [58] have shown how the pore
pressure within a saturated rock sample will fall if the
loading rate exceeds the rate at which fluid can flow
into the stressed region. The resulting dilatancy harden-
ing has a temporary stabilizing effect on potential
failure.

The increase in specimen volume that takes place
relative to simple elastic changes, is due to microcrack-
ing. The resulting volumetric dilation rate accelerates
when the stress level reaches 90-95% of the fracture
stress and reaches a maximum at fracture [1]. This
observation is analogous to the one-dimensional dilation
observed during shear of rough joints, fractures or
faults as discussed earlier.

Nur [52] poses the question of earthquakes: “Why
do they disappear at shallow depths such as along the
San Andreas fault?”. Possibly the answer lies in the
dilation and resulting increase in effective normal stress
that may occur as a result of shear along pre-existing
faults. Under low confining pressure, the initial volume
increase caused by fault dilation might well exceed that
caused by the earlier microcracking that preceded the
formation of the fault. The effect of one-dimensional
fault dilation is illustrated in Fig. 22.

The effective normal stress might increase from two
causes. Firstly, due to the stiffness of the surrounding
rock mass inhibiting displacement perpendicular to the
fault, and secondly, due to the rapidly reduced water
pressure accompanying any potentially rapid shear dis-
placement. These two effects might be so marked for
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Fig. 22. Cross-sections illustrating the measured shearing paths of

model tension fractures. At full-scale these models represent 30 m

long fractures in a rock with g, = 50 MN/m?, sheared under a nor-
mal stress equal to 5.0 MN/m? in each case.

the near-surface section of a fault that a seismic
event—in other words a rapid instability—is more or
less inhibited. However, a slow shear displacement rate
constantly controlled by the fluctuating effective nor-
mal stress can be imagined under certain circumstances.
At a later period in the life of a fault the build up
of fine gouge would presumably reduce the likelihood
of a rapid instability even though the fault would poss-
ibly no longer be dilating.

The shear tests on model tension fractures mentioned
earlier [17,18,54], which can be likened to tests on
30 m long sections of a rough post-fracture fault, indi-
cated that even at the highest simulated normal stresses
applied (o, = 11 MN/m? or 110 bars, o /o, = 84,
d, = 7° approx), one-dimensional dilation continued
long after peak shear strength was developed, as illus-
trated by tests shown in Fig. 22. At the end of the
shear test, after a shear displacement equal to about
89 of the length of fracture, the dilation of the surfaces
had caused an increase in dimensions perpendicular to
the fracture of about 0.25% of the length of fracture,
in other words about 7 cm at full scale. There was
no tendency for any reduction in dimensions with in-
creasing displacement. All that happened after peak
shear strength was that the dilation rate gradually

reduced to zero. The walls of the fracture remained
propped open by the accumulated shear debris and the
few remaining ‘rock-to-rock’ contact areas.

The increase in dimensions occurring on a full-scale
fault under the same stresses as above would probably
greatly exceed the 7 cm indicated for a hypothetical
30 m long fracture. Thus it can be concluded that even
at the higher stresses found at a depth of 1 or 2 km,
dilation along a post-fracture fault could have a signifi-
cant effect in reducing the likelihood of a shallow seis-
mic event.

CONCLUSIONS

1. The most important conclusion to be drawn from
this review of frictional strength and fracture strength
of rocks is that these two components of rock mass
strength are related. A knowledge of fracture strength
can lead directly to a surprisingly accurate estimate of
frictional strength.

2. At the low levels of effective normal stress (c,)
appropriate to most rock engineering problems, the fric-
tional strength of a joint is related to the fracture
strength of the intact rock by means of the unconfined
compression strength (a.). The effect of confinement is
presumably limited or absent due to the very small
area of contact between the walls of joints in a material
as rigid as rock is under these relatively low stress
levels. The dimensionless ratio ¢ /o, controls the fric-
tional strength at these stress levels.

3. At high levels of effective normal stress the fric-
tional strength is related to the fracture strength by
means of the confined compression strength which is
represented by the differential stress (6,~03) at fracture.
The dimensionless ratio (6,-03)/0, (of which o /a, is
a special case, i.e. g3 = 0) varies relatively little over
a wide range of g3 and results in a limited range of
frictional strength at high stress levels (Fig. 1) compared
to the wide range of frictional strength exhibited at
low stress levels (Fig. 2).

4. At very high stress levels the shear stress required
to fracture intact rock is no greater than the shear
strength of the resulting fault. This important condi-
tion, known as the brittle-ductile transition is found to
be dependent on the basic friction angle (¢,) for the
rock concerned. High values such as the 35-40° typical
of limestones cause the transition to occur at relatively
low stress levels, whilst values below 25° such as for
shale cause the transition to occur at relatively high
stress levels. Values predicted by the empirical relation-
ships describing frictional strength and fracture
strength agree closely with experimental results
reported in the literature.

5. The key to the relationship between frictional
strength and fracture strength is the discovery of a criti-
cal state for rock. It appears from a wide survey of
high pressure triaxial data that the Mohr envelopes
representing the peak shear strength of intact rocks,
eventually reach a point of zero gradient on crossing
a certain critical state line. This line has a gradient of
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% (i.e. 7/0, = 3). The ultimate shear strength represented
by the top point of a Mohr envelope is associated with
a critical effective confining pressure for each rock. The
major and .minor principal effective stresses (o,) and
(03) associated with failure at the critical state are in
the ratio of 3:1 (ie. 6, = 3 03).

6. The effective normal stress (g,) mobilized on the
orthogonal conjugate shear surfaces is found to be
equal to the differential stress (s,—0;) at the critical
state (i.e. 6, = 6, — 03). This happens to be the limiting
value of the dimensionless ratio (o,-05)/g, used in for-
mulating the empirical laws of friction and fracture
strength. By implication, the one-dimensional dilation
normally associated with the shearing of joints and
faults is completely suppressed if the applied stress
reaches the level of the critical effective confining
pressure.

7. The empirical theories of friction and fracture
strength which were developed from a review of labora-
tory-scale tests, can also be applied to the interpre-
tation of full-scale features. One of the most obvious
areas for application is in the interpretation of joint
and fault orientations in the field. An important condi-
tion for the development of such features is the brittle—
ductile transition, below which rock will behave in a
brittle manner. It can be shown that the angle (28)
between conjugate shear planes can in theory range
from about 60° to more than 90° at the transition,
depending on the basic friction angle (¢;) of the rock.
The common value of ¢, = 30° suggests values of 28
of about 75°.

8. The wide-spread occurrence of approximately
orthogonal shear joints in the field (28 = 90°) and the
markedly planar traces of these features may possibly
be predetermined by slip planes that develop under
stress levels higher than the transition. Possibly the
stress levels were as high as those required to reach
the critical state when the rocks were in a completely
ductile state. Orthogonal failure planes should develop
in all rocks independent of their various ¢, values, if
formed under critical stress conditions.

9. Large scale rock mechanics tests designed to inves-
tigate the effect of scale on the compression strength
and frictional strength of rocks have been analysed
using the empirical theory of frictional strength. It is
tentatively concluded that the scale effect on the fric-
tional strength of joints may die out when joint lengths
exceed about 2-3 m. The scale effect on compression
strength appears to die out when sample sizes exceed
about 1 m. However, it is possible that these scale
effects may be absent or much reduced under the in-
fluence of high confining pressures in the Earth’s crust,
if pore and flaw volumes are significantly reduced.

10. The stress drops recorded in the laboratory when
rock fails by brittle fracture, and the stress drops
measured during stick-slip events on pre-existing
‘laboratory faults’ are one to two orders of magnitude
larger than the stress drops of about 1-10 MN/m?
(10-100 bars) back-calculated from major earthquakes.
Two alternative conclusions can be drawn. If a scale

effect does still exist under the great pressure found
in the Earth’s crust, then earthquakes caused by brittle
fracture may occur at quite shallow depths since the
resulting stress drops would be scaled down to the level
back-calculated. However, if a scale effect does not exist
at depth, then earthquakes caused by brittle fracture
will apparently be limited to depths greater than some
tens of km, as only at these depths will the stress drops
be as small as those back-calculated. Failure would be
limited to pressures close to those required to reach
the brittle-ductile transition.

11. Strength corrosion caused by saturation with
water reduces both the compressive strength and the
frictional strength of rock. Rough-surfaced joints and
faults presumably reduce in strength more than smooth
surface due to the adverse effect of moisture on the
tensile strength of the asperities. If these strength cor-
rosion effects also occur under high pressure and on
a large scale, then the stress drops associated with the
brittle failure of intact rock and with slip on pre-exist-
ing faults in the Earth’s crust may also be reduced by
the presence of moisture.

12. The one-dimensional dilation associated with
shearing of rough pre-existing faults may explain the
lack of seismicity in the upper 1 or 2 km of the crust.
The dilation will tend to strengthen the fault against
sudden displacement, due to the increased effective nor-
mal stress resulting from the stiffness of the surround-
ing rock mass. If water is present in quantity, sudden
displacement of the fault may be effectively suppressed
by the reduction in water pressure accompanying any
dilation of the fault.
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